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Abstract. In terms of a previously suggested iterative method for finding the lowest-lying 
eigenstate of hermitian matrices the problem of pseudo-convergence, i.e. the tendency to 
converge to an undesired eigenvalue, is discussed. A simple extension of this algorithm is 
presented which provides a means of identifying and circumventing pseudo-convergence in 
many cases. This extended scheme may also be used simultaneously to obtain excited states 
in a numerically economical manner. 

1. Introduction 

Under certain conditions most iterative diagonalisation schemes exhibit a disturbing 
tendency to converge to the wrong eigenvalue. This pseudo-convergence generally 
arises, as has recently been mentioned (Berger et a1 1977), when the component of the 
desired eigenvector in the original arbitrarily chosen start vector is small (but non- 
vanishing) compared with the components of one or more of the neighbouring 
eigenvectors. In the case of the simple power method (Faddejew and Faddejewa 1964) 
or the more elegant Lanczos algorithm (Lanczos 1950), for example, the only known 
practical remedies for this situation are (Whitehead 1972, 1977): ( a )  perform addi- 
tional iterations to ensure that convergence has really been achieved; or (b) choose 
another start vector and see if it converges to the same eigenvector. Although both of 
these prescriptions leave something to be desired, little else is available within the 
context of the aforementioned methods. In the present note, however, we wish to point 
out that within the framework of an algorithm recently suggested by us (Berger et a1 
1977) a simple extension provides under certain circumstances a rather straightforward 
means of alleviating this problem. 

2. Pseudo-convergence in the old algorithm 

We begin with an arbitrary start vector and perform the first two iterations of the 
Lanczos algorithm. After diagonalising the subsequent 2 x 2 matrix we obtain two 
mutually orthogonal vectors 11, I) and 11, U) with eigenvalues el,l and el,= such that 
e1.l C el,,,. Using 11, I) as the new start vector, a subsequent 2 x 2 matrix may be 
generated yielding upon diagonalisation two orthogonal vectors 12, l )  and 12, U )  which 
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allows as before the choice of a new start vector. Previously we have proved that 
iterations performed in this manner are ultimately convergent to the eigenvector 
corresponding to the lowest eigenvalue which has a non-zero component in the original 
start vector. (We shall refer to this vector in the following as the ground-state vector.) 
This is mainly due to the fact that in each iteration step the component of the 
ground-state eigenvector increases. 

At present, however, we are more interested in what happens to the components of 
the other eigenvectors in the iterated vector. Although these components must 
ultimately vanish when convergence is achieved they need not decrease monotonically 
in each iteration step. In fact if we expand (Berger et ul 1977) 

lk, 1 )  = 1 IA), 
h 

where / A )  are the eigenvectors of the matrix considered, we obtain 

where EA are the exact eigenvalues and v k  the off-diagonal matrix elements in the kth 
iteration. For all A for which EA satisfies 

e k + l . l  a E ,  ( 2 ,  

it can be shown that equation (1) gives lbhk+l 1 > jbtl, in spite of the fact that all the bhk for 
A f 0 must ultimately vanish if convergence to the ground state is to be achieved. Thus 
in each iteration step only those components of the eigenvectors whose eigenvalues 
satisfy ek+l,i <EA may decrease in magnitude in the kth iteration, while the components 
of the eigenvectors with EA S e k + l , l  will increase in magnitude. As can be seen from 
equation (1) the rate of increase is almost equal for components which are close in 
energy. 

For example, consider now the case where the largest component in the start vector 
corresponds to the first excited eigenvector, i.e. the eigenvector whose eigenvalue El is 
closest to the eigenvalue Eo of the ground-state eigenvector, and the eigenvalues Eo and 
El  are not widely separated. As long as equation (2) is satisfied for A = 0 and A = 1, bi 
and b: increase at almost equal rates. Because the norm of the iterated vectors is 
constant the overall contribution of the higher lying components to lk, I )  decreases, and 
thus it may happen that the first excited state becomes the dominant contribution. This 
is exactly the behaviour exhibited in our calculations. Whenever pseudo-convergence 
to some Eh occurred we found that the high-lying contributions were reduced, whereas 
the coefficient of the eigenvector IA) had a maximum. Furthermore, the variance 
calculated with the iterated vectors showed a minimum (Kreuzer 1978). 

3. The extended algorithm 

We now propose the following. Instead of performing only ground-state iterations 
(which we shall refer to as gs iterations in the following) in the two-dimensional 
sub-spaces spanned by Ik, I) and Ik, U), a parallel set of 2 x 2 iterations (which we shall 
denote as p iterations) is performed simultaneously such that the start vector in each p 
iteration is orthogonal to a corresponding start vector in a gs iteration. For the first p 
iteration the normalised start vector 10) may be constructed quite simply in the following 
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manner: 

10) = No0 -P2)1, U)  

P2 = 12, w, 4 
where 

and No is a normalisation constant. It is clear that this start vector is orthogonal to the 
normalised vector 12, I) which will be used as a start vector for the next gs iteration. In 
the subsequent p iterations the new start vectors may be constructed as follows: 

Ik) = Nk (1 -Pk+2) Ik - 1, I )  

Pk+Z-/k+2, f ) ( k + 2 ,  f I  
where again Nk is a normalisation factor such that 

(klk) = 1 

and where Ik - 1, I) is the eigenvector corresponding to the lower eigenvalue of the 2 x 2 
diagonalisation initiated with the start vector Ik - 1). Again by construction, this start 
vector is orthogonal to Ik +2, I )  which is also the start vector for the next gs iteration. 

-7 I, I 

Flgure 1. Convergence pattern of the two lowest-lying eigenvectors of a random 100 x 100 
symmetric matrix: (a) probabilities of the ground state (full curve) and the first excited state 
(broken curve) in the iterated p vectors; (b) same as (a) but for iterated gs vectors; (c) 
expectation values of the vectors of the gs iterations (full curve) and the vectors of the p 
iterations (broken curve). On the right-hand side the four lowest-lying eigenvalues of the 
matrix are given. The probabilities of the ground and first excited states in the original start 
vector are 10% each. 
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In the case where the iterated gs vectors (i.e. the vectors of the gs iterations) 
converge monotonically to the ground state, the orthogonalisation condition is quite 
simply a convenient means of projecting the converging ground-state eigenvector out of 
2 x 2 iterations involving the p vectors since 

where / A  = 0) is the ground-state eigenvector of the matrix to be diagonalised. Hence 
by removing the component of this vector, the iterated p vectors must ultimately 
converge to the eigenvector corresponding to the first excited state, assuming that its 
component in the original start vector is non-zero and that it was not accidentally 
removed during the iterations. Furthermore, as will be discussed later, the parallel 
iterations require only a small amount of additional numerical effort, so that the 
proposed method is a reasonably efficient means of calculating the first excited state. 

On the other hand, what interests us is what happens when pseudo-convergence 
occurs in the gs iterations. In this case the expectation values of the iterated gs vectors, 
e k J ,  remain almost constant for a number of iterations. At the same time the 
eigenvalues E ~ J  of the iterated p vectors may continue to decrease in each iteration step. 
The orthogonality condition, however, prevents the two iterated vectors from becom- 
ing the same vector. Hence if the pseudo-convergence in gs iterations persists for a 
sufficient number of iterations it may eventually happen that 

E k , l  e k i 2 , l  

i.e. that the expectation values of the p and gs iterations may cross. 

Figure 2. As figure 1 with the probabilities of ground and first excited states in the original 
start vector equal to 0.1 O/O and 10% respectively. 
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From the previous discussion we know that the component of the eigenstate /A)  
becomes dominant in the iterated gs vectors if pseudo-convergence to EA occurs. 
Because of the orthogonalisation there is a good chance that in the p vectors the 
corresponding component will be suppressed and if crossing occurs the component of 
the ground-state will become dominant. 

In order to demonstrate this we have performed the following numerical cal- 
culations. A 100 x 100 symmetric random matrix was generated. In the first case (see 
figure 1) the components of the ground and first excited states in the original start vector 
were of equal magnitude. As expected the gs iterations converge monotonically to the 
ground state, and the iterated p vectors converge ultimately to the first excited state. 
Adjusting the start vector so that the dominant component is that of the first excited 
state (see figure 2) yielded pseudo-convergence in the iterated gs vector. Furthermore 
the expectation values obtained from the iterated gs and p vectors crossed, the 
expectation value of the iterated p vector becoming less than that of the gs vector. 
Iterating further produced a second crossing as the two vectors converged ultimately to 
ground and first excited eigenvectors. Realising that the crossing of the iterated 
expectation values is indicative of pseudo-convergence, the problem may be remedied 
quite simply at this point by interchanging the two vectors (see figure 3), i.e. taking 
Ik - 2, I) as new start vector for the gs iterations and Ik, I) as new start vector for the p 
iterations. This, needless to say, greatly improves the convergence rate for the (new) gs 
vector, since its dominant component is now that of the ground-state eigenvector. 
Furthermore, as far as we know this is the only way to detect pseudo-convergence 
directly during the iteration procedure without either having to perform additional 
iterations or to begin again with a different start vector. 

C 

-4 
-6 
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Fsgure 3. Same as figure 2 with interchange of the vectors of the gs iteration and p iteration 
at the point indicated by the arrows. 
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We also wish to point out that the set of parallel iterations requires very little 
additional numerical work since the iterated vectors in both cases may always be 
represented as a sum of terms involving different powers of the matrix to be diagonal- 
ised acting on  the original start vector. These must in any case always be calculated for 
the gs iterations and may therefore be stored for use in the p iterations. 

Furthermore, extending the present procedure to include more than just one 
parallel set of 2 x 2 iterations, may well provide a reasonable means of obtaining the 
lower-lying eigenstates. For an arbitrary original start vector the convergence rates of 
the respective states may be increased in cases of pseudo-convergence by an appro- 
priate re-ordering of the start vectors for the subsequent iterations. 
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